Дипломные, курсовые и контрольные работы на заказ Заказать написание уникальной работы, купить готовую работу  
 
Заказать реферат на тему
Диплом на заказа
Крусовые и рефераты
Заказать курсовик по химии
Заказать дипломную работу
контрольные работы по математике
контрольные работы по геометрии
Заказать курсовую работу
первод с английского
 
   
   
 
Каталог работ --> Технические --> Информатика --> Генетические алгоритмы

Генетические алгоритмы

ТМЦДО

Курсовая по предмету:
"Информатика"



Название работы:
"Генетические алгоритмы"




Автор работы: Юлия
Страниц: 18 шт.



Год:2009

Цена всего:1490 рублей

Цена:2490 рублей

Купить Заказать персональную работу


Краткая выдержка из текста работы (Аннотация)

ВВЕДЕНИЕ

Генетическими алгоритмами называют оптимизационные методы, основанные на идее эволюции с помощью естественного отбора, выдвинутой Дарвином.

Генетические алгоритмы работают с совокупностью "особей"  популяцией, каждая из которых представляет возможное решение данной проблемы. Каждая особь оценивается мерой ее "приспособленности" согласно тому, насколько "хорошо" соответствующее ей решение задачи. В природе это эквивалентно оценке того, насколько эффективен организм при конкуренции за ресурсы. Наиболее приспособленные особи получают возможность "воспроизводить" потомство с помощью "перекрестного скрещивания" с другими особями популяции. Это приводит к появлению новых особей, которые сочетают в себе некоторые характеристики, наследуемые ими от родителей. Наименее приспособленные особи с меньшей вероятностью смогут воспроизвести потомков, так что те свойства, которыми они обладали, будут постепенно исчезать из популяции в процессе эволюции. Иногда происходят мутации, или спонтанные изменения в генах.

Таким образом, из поколения в поколение хорошие характеристики распространяются по всей популяции. Скрещивание наиболее приспособленных особей приводит к тому, что исследуются наиболее перспективные участки пространства поиска. В конечном итоге популяция будет сходиться к оптимальном решению задачи. Преимущество генетических алгоритмов состоит в том, что они находят приблизительные оптимальные решения за относительно короткое время.

Общая схема построения генетических алгоритмов

Генетические алгоритмы [1-4] работают по аналогии с алгоритмом эволюции видов (популяций) живых организмов. В генетическом алгоритме каждый индивид кодируется сходным с ДНК методом  в виде строки из символов одного типа. Длина строки (ДНК) постоянна. В дальнейшем в качестве кодовой строки будет использоваться битовая (двоичная) строка. Популяция из индивидов подвергается процессу эволюции с интенсивным использованием скрещивания и мутаций.

Кодовую строку каждого индивида назовем геномом. Для каждого индивида в популяции задается целевая функция. Значение целевой функции назовем целевым значением. Вектор, состоящий из целевых значений всех индивидов в популяции, назовем вектором целевых значений. Тогда если вычислен вектор целевых значений, то можно определить приспособленность (fitness) индивида в популяции.

Содержание работы

СОДЕРЖАНИЕ

Задание. Вариант № 13 1

СОДЕРЖАНИЕ 1

ВВЕДЕНИЕ 1

Общая схема построения генетических алгоритмов 2

Построение генетического алгоритма по предложенному заданию. 3

Выводы: 6

ЛИТЕРАТУРА 7

ПРИЛОЖЕНИЕ: ПРОГРАММА 8

Использованная литература

  1. Емельянов В.В., Курейчик В.В., Курейчик В.М. Теория и практика эволюционного моделирования.  М.:ФИЗМАТЛИТ, 2003.  432 с.
  2. Батищев Д.А. Генетические алгоритмы решения экстремальных задач.  Воронеж: Изд.-во ВГТУ, 1995.
  3. Дюк В., Самойленко А. Data Mining: учебный курс . - СПб: Питер, 2001. - 386 с.: ил.
  4. Божич В.И., Кононенко Р.Н., Абияка А.А. Нейросетевое управление в мультиагентной системе с самоорганизующейся коммуникацией // Материалы Всеросс. конф. "Нейроинформатика-99", М.: МИФИ, 1999. Часть 3. - С.239-246.
  5. Исаев Сергей. Популярно о генетических алгоритмах www.algolist.manual.ru


Другие похожие работы