Генетические алгоритмы
Курсовая по предмету:
"Программирование"
Название работы:
"Генетические алгоритмы"
Автор работы: Юлия
Страниц: 28 шт.
Год:2010
Краткая выдержка из текста работы (Аннотация)
Генетический алгоритм включает три операции: селекция, скрещивание, мутация.
Оператор селекции (reproduction, selection) осуществляет отбор хромосом в соответствии со значениями их функции приспособленности. Существуют как минимум два популярных типа оператора селекции: рулетка и турнир.
Содержание работы
Необходимо найти минимум функции в заданной области.
При выполнении данного проекта необходимо учитывать, что решение задачи является подверженным влиянию случайных величин. Поэтому каждый запуск программы необходимо повторять, по крайней мере, 2030 раз. После этого из набора полученных решений надо отобрать лучшее. Разумеется, это надо сделать, поместив содержание главной программы в соответствующий цикл, в котором будет одновременно выбираться наилучшее решение. Одновременно надо вычислить и среднее значение минимума за эти 20-30 прогонов.
Рассмотреть равномерное скрещивание и инверсионную мутацию.
Каждая переменная кодируется 30 битами.
Провести расчеты для 30 и 100 поколений.
Сравнить получающиеся решения при размерах популяции 10, 20, 30 особей.
Введение 3
Понятие генетического алгоритма 5
Генетические операторы 8
Фитнес-функция 12
Некоторые модели генетических алгоритмов 14
Genitor (Whitley) 14
CHC (Eshelman) 14
Hybrid algorithm (Davis) 15
Island Models 15
Выводы 17
Заключение 19
Литература 20
Приложение А 22
Использованная литература
- Mitchell M. An Introduction to Genetic Algorithms. Cambridge, MA: The MIT Press, 1996
- Thomas Back. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford: University Press, New York, 1996.
- Аналитические технологии для прогнозирования и анализа данных // Нейропроект [Электронный ресурс]. Режим доступа: http://www.neuroproject.ru/genealg.php - Загл. с экрана
- Батищев Д.А. Генетические алгоритмы решения экстремальных задач. - Воронеж: Изд-во ВГТУ, 1995
- Вороновский Г.К., и др. Генетические алгоритмы, искусственные нейронные сети и проблемы виртуальной реальности / Г.К.Вороновский, К.В.Махотило, С.Н.Петрашев, С.А.Сергеев. Харьков: Основа, 1997
- Генетические алгоритмы - математический аппарат// Методы оптимизации [Электронный ресурс]. Режим доступа: http://www.basegroup.ru/library/optimization/ga_math/ - Загл. с экрана
- Генетические алгоритмы //Дискретная математика: алгоритмы[Электронный ресурс]: портал Санкт-Петербургского Государственного Университета информационных технологий, механики и оптики. Режим доступа: http://rain.ifmo.ru/cat/view.php/theory/unsorted/genetic-2005 - Загл. с экрана
- Генетические операторы // Генетические алгоритмы [Электронный ресурс]. Режим доступа: http://qai.narod.ru/GA/genoperators.html - Загл. с экана
- Генетический алгоритм: основные операции // Генетические алгоритмы [Электронный ресурс]. Режим доступа: http://g-u-t.chat.ru/ga/oper.htm - Загл. с экрана